z-logo
Premium
In situ fibrillation of polypropylene/polyamide 6 blends: Effect of organoclay addition
Author(s) -
Chomat Dimitri,
Soulestin Jérémie,
Lacrampe MarieFrance,
Sclavons Michel,
Krawczak Patricia
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41680
Subject(s) - organoclay , montmorillonite , materials science , polyamide , rheology , polypropylene , polarity (international relations) , nanocomposite , composite material , polymer chemistry , chemical engineering , chemistry , engineering , biochemistry , cell
In situ fibrillation of PP/PA6 blends (85/15 wt %) is investigated in presence of two kinds of organically modified montmorillonite, differing by the polarity of their surfactant. The organoclay is primary dispersed either in the PP (for the low‐polarity Cloisite® 15A) or in the PA6 (for the high‐polarity Cloisite® 30B), according to its assumed affinity. In absence of organoclay, a fibrillar morphology is achieved after the melt‐blending and hot‐stretching step, as evidenced by SEM analysis. Upon clay addition, different morphological trends are evidenced. The C15A leads to a refinement of the fibrils whether the C30B induces a transition from fibrillar to nodular structure. These trends are ascribed to drastic changes in viscosity and elasticity ratios, due to the filler initial localization. Several techniques (DSC, STEM) point out a C15A migration from the PP to the PP/PA6 interface. Rheological measurements highlight the possibility of a double‐percolation phenomenon, linked to the fibrillar microstructure of the PP/PA6/C15A blend. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41680.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom