z-logo
Premium
Synergistic effect between silicone‐containing macromolecular charring agent and ammonium polyphosphate in flame retardant polypropylene
Author(s) -
Lai Xuejun,
Yin Changyu,
Li Hongqiang,
Zeng Xingrong
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41580
Subject(s) - ammonium polyphosphate , fire retardant , intumescent , charring , limiting oxygen index , thermogravimetric analysis , polypropylene , char , materials science , composite number , nuclear chemistry , thermogravimetry , composite material , chemical engineering , polymer chemistry , chemistry , pyrolysis , engineering
A novel silicone‐containing macromolecular charring agent (Si‐MCA) was synthesized via polycondensation, and it was combined with ammonium polyphosphate (APP) to flame retard polypropylene (PP). The results showed that Si‐MCA exhibited a good synergistic effect with APP in flame retardant PP. When the content of APP was 18.7 wt % and Si‐MCA was 6.3 wt %, the limiting oxygen index value of the PP/APP/Si‐MCA composite was 33.5%, and the vertical burning (UL 94) test classed a V‐0 rating. The peak heat release rate, total heat release, average mass loss rate, and total smoke production of the composite were also decreased significantly. Moreover, the PP/APP/Si‐MCA composite showed an outstanding water resistance. After soaking in 70°C water for 168 h, the PP/APP/Si‐MCA composite could still reach a UL 94 V‐0 rating at 20.0 wt % IFR loading, whereas the PP/APP/PER composite failed to pass the UL 94 test even at 25.0 wt % IFR loading. Thermogravimetric analysis, thermogravimetry‐Fourier transform infrared spectrometry, and scanning electron microscopy‐energy dispersive X‐ray spectrometry results revealed that a compact and thermostable intumescent char was formed by APP/Si‐MCA during burning, thus effectively improved the flame retardancy of PP. The possible synergistic mechanism between APP and Si‐MCA was also discussed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41580.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom