Premium
Effect of interfacial area on heterogeneous free radical grafting of vinyl monomers in supercritical carbon dioxide: Grafting of acrylic acid on poly(vinylidenefluoride) nanoparticles
Author(s) -
Lanzalaco Sonia,
Scialdone Onofrio,
Galia Alessandro
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41541
Subject(s) - grafting , supercritical carbon dioxide , supercritical fluid , monomer , polymer chemistry , acrylic acid , materials science , polymer , chemical engineering , radical initiator , nanoparticle , chemistry , organic chemistry , composite material , nanotechnology , engineering
The role of the polymer interfacial area on free radical grafting of acrylic acid (AA) onto poly(vinylidenefluoride) (PVDF) was studied at 65°C using supercritical carbon dioxide (scCO 2 ) as a solvent and swelling agent, benzoylperoxide (BPO) as chemical initiator and PVDF nanoparticles as polymer matrix. Under adopted conditions PVDF particles do not melt neither dissolve in the reaction medium and FTIR analyses performed on carefully washed nanoparticles confirmed the achievement of high grafting levels. The mass fraction of grafted AA increased with the grafting time and the BPO concentration while it decreased when the density of the fluid phase was enhanced. Collected results suggest that the grafting level obtained by free radical grafting of vinyl monomers onto solid polymer in scCO 2 can be significantly enhanced by increasing the interfacial area of the matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41541.