Premium
Supramolecular thermoplastic elastomer with thermally scratch repairable effect from 3‐amino‐1,2,4‐triazole crosslinked maleated polyethylene‐octene elastomer/nylon 12 blends
Author(s) -
Kashif Muhammad,
Chang YoungWook
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41511
Subject(s) - materials science , composite material , differential scanning calorimetry , elastomer , nylon 6 , polymer blend , octene , thermoplastic elastomer , ultimate tensile strength , polyethylene , compatibilization , polybutylene succinate , dynamic mechanical analysis , thermoplastic , polymer , scanning electron microscope , copolymer , physics , thermodynamics
In this study, nylon 12 (5–25 wt %) was melt blended with a supramolecular thermally repairable thermoplastic elastomer (ATA‐POE), which was generated by crosslinking of maleated polyethylene‐octene elastomer (mPOE) with 3‐amino‐1,2,4‐triazole (ATA), in an internal mixer. The effect of nylon 12 content on the phase morphology, thermomechanical properties, and thermally triggered scratch repairing effects of the ATA‐POE/nylon 12 blends was investigated. Scanning electron microscopy results showed that nylon 12 formed a dispersed phase with submicron scale in a continuous ATA‐POE phase. Fourier transform infrared spectroscopy and differential scanning calorimetry analysis revealed that there are extensive hydrogen bonding interactions between the ATA‐POE and nylon 12 in the blends, which was manifested by a decrease in the melting temperature of each polymer component. Tensile and dynamic mechanical test showed that tensile modulus increased with increasing nylon 12 contents in the blend with maintaining fairly high elastic recoverability. Furthermore, the blends containing up to 20 wt % of nylon 12 showed good scratch repairing effects when they are heated above melting temperature of the ATA‐POE phase in the blend. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41511.