Premium
Preparation and monovalent selective properties of multilayer polyelectrolyte modified cation‐exchange membranes
Author(s) -
Deng Huining,
Wang Zixia,
Zhang Wei,
Hu Baisong,
Zhang Shaofeng
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41488
Subject(s) - polyelectrolyte , membrane , chemical engineering , polyelectrolyte adsorption , electrodialysis , epichlorohydrin , adsorption , ion exchange , polyacrylic acid , bilayer , selectivity , materials science , chemistry , polymer chemistry , polymer , ion , organic chemistry , biochemistry , engineering , catalysis
This study reports the modification of commercial cation‐exchange membrane by layer‐by‐layer adsorption of polyethyleneimine and poly(acrylic acid) (PAA) to endow them with monovalent ion selectivity. The chemical and morphological changes of the modified membrane surface were examined by ATR‐FTIR and SEM, respectively. The permselectivity for monovalent cations of the membranes was investigated by electrodialysis experiments. The effects of deposited bilayer number, the salt concentration, and pH of the dipping polyelectrolyte solutions on selectivity were investigated. Meanwhile, the resistance of membranes was measured taking energy consumption into consideration. The polyelectrolyte multilayer was crosslinked using epichlorohydrin to improve stability, and the durability of the composite membrane was studied. Separation mechanism of the composite membrane was also investigated. It is demonstrated that the bivalent cations are mainly rejected by electrostatic repulsion from the positive charge on the surface of the composite membranes. The sieving effect of the dense structure of skin layer becomes more pronounced with the number of deposited layers increased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41488.