z-logo
Premium
Preparation, morphology, and conductivity of waterborne, nanostructured, cationic polyurethane/polypyrrole conductive coatings
Author(s) -
Wang Haihua,
Liu Yun,
Fei Guiqiang,
Lan Jing
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41445
Subject(s) - materials science , polypyrrole , thermogravimetry , polyurethane , conductivity , composite material , chemical engineering , polymer chemistry , polymer , chemistry , polymerization , engineering
To endow cellulose fiber papers with good conductivity and simultaneously retain the mechanical strength of the conductive paper, a kind of waterborne, nanostructured, cationic polyurethane (CPU)/polypyrrole (PPy) conductive coatings were developed to modify the paper surface. Fourier transform infrared spectroscopy, atomic force microscopy, and thermogravimetry–differential thermogravimetry demonstrated that the peak associated with hydrogen bonding between NH and CO of CPU was shifted, and chemical bonds between CPU and PPy were formed. Good compatibility between CPU and PPy was simultaneously established. Transmission electron microscopy and atomic force microscopy also suggested that PPy was encased and embedded in the CPU colloidal particles in a uniform style, and the surface of the CPU/PPy film was covered with a smooth, coherent conductive layer. With increasing pyrrole (Py) content from 5 to 20 wt %, the particle size increased from 55.08 to 74.59 nm, and the dispersity index (DPI) decreased. In addition, the conductivity of CPU/PPy increased from 0.1 to 5.0 S/cm. When the Py content was greater than 20 wt %, apparent increases in the particle size and DPI were detected as was particle coagulation; this resulted in decreased conductivity. Compared with the uncoated paper, the paper coated with CPU/PPy dispersions displayed different surface morphologies. The surface of the paper was completely enwrapped by the CPU/PPy conductive films when the coating amount was 45.42 g/m 2 . With increasing coating amounts from 10.35 to 67.86 g/m 2 , the conductivity of the conductive coated paper increased from 2.78 × 10 −3 to 2.16 S/cm, the tensile strength increased from 35.3 to 60.4 N m/g, and the conductive coated paper displayed good conductivity stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41445.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here