z-logo
Premium
Electrospray preparation of propranolol‐loaded alginate beads: Effect of matrix reinforcement on loading and release profile
Author(s) -
Khorram Mohammad,
Samimi Mohsen,
Samimi Abdolreza,
Moghadam Hamid
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41334
Subject(s) - electrospray , reinforcement , materials science , matrix (chemical analysis) , propranolol , controlled release , chemical engineering , chemistry , composite material , chromatography , mass spectrometry , nanotechnology , medicine , engineering
In the present study, propranolol loaded‐calcium alginate beads were prepared from concentrated solutions of sodium alginate, using combined method of electrospray and ionotropic gelation. The objectives of the study were to increase the propranolol‐HCl loading and to decrease its initial burst release. However, the effects of voltage, nozzle diameter, flow rate, and concentration of sodium alginate on size of the beads and drug entrapment efficiency (DEE) were also investigated. The matrix of alginate beads was reinforced with dextran sulfate and/or coated with chitosan. The mean particle size of the beads, their swelling behavior, and drug entrapment efficiency were characterized. Furthermore, the drug release profiles from the prepared beads in simulated gastric fluid and intestinal fluid were evaluated and compared. Among the parameters that affected the electrospray of alginate, voltage had a pronounced effect on the size of beads. The size of beads was reduced to a minimum value on increasing the voltage. Furthermore, increasing the flow rate, alginate concentration, and nozzle diameter and decreasing the voltage led to improvement in DEE. Enhancing the alginate concentration as well as coating with chitosan and reinforcing with dextran sulfate led to increase of the encapsulation efficiency and therefore decrease of the drug release rate in both pHs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41334.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here