z-logo
Premium
Influence of metal‐oxide‐supported bentonites on the pyrolysis behavior of polypropylene and high‐density polyethylene
Author(s) -
Ahmad Imtiaz,
Khan Mohammad Ismail,
Khan Hizbullah,
Ishaq Mohammad,
Tariq Razia,
Gul Kashif,
Ahmad Waqas
Publication year - 2015
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41221
Subject(s) - high density polyethylene , polypropylene , polyethylene , bentonite , catalysis , pyrolysis , materials science , fourier transform infrared spectroscopy , metal , oxide , polymer chemistry , chemical engineering , chemistry , organic chemistry , composite material , engineering
In this article, we report on the pyrolysis of polypropylene (PP) and high‐density polyethylene (HDPE) in the absence and presence of plain and metal‐oxide‐impregnated bentonite clays [BCs; acid‐washed bentonite clay (AWBC), Zn/AWBC, Ni/AWBC, Co/AWBC, Fe/AWBC, and Mn/AWBC] into useful products. Thermal and catalytic runs were performed at 300°C in the case of PP and at 350°C in the case of HDPE for a contact time of 30 min. The effects of different catalysts and their concentrations on the overall yields and the yields of liquid, gas, and residue were studied. The efficacy of each catalyst is reported on the basis of the highest liquid yields (in weight percentage). The derived liquid products were analyzed by Fourier transform infrared spectroscopy and gas chromatography–mass spectroscopy; this confirmed the presence of paraffins, olefins, and naphthenes. The results indicate the catalytic role of impregnated BCs compared to plain BC with the optimum efficiency shown by Co/AWBC in the case of PP and Zn/AWBC in the case of HDPE toward the formation of liquid products in a desirable C range with the enrichment of olefins and naphthenes in the case of PP and paraffins and olefins in the case of HDPE compared to the thermal run. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132 , 41221.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here