z-logo
Premium
Synthesis, polymerization, and properties of the allyl‐functional phthalonitrile
Author(s) -
Zou Xingqiang,
Xu Mingzhen,
Jia Kun,
Liu Xiaobo
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41203
Subject(s) - polymerization , curing (chemistry) , materials science , differential scanning calorimetry , glass transition , monomer , polymer chemistry , thermal decomposition , polymer , bulk polymerization , composite material , radical polymerization , organic chemistry , chemistry , physics , thermodynamics
A novel bisphthalonitrile monomer containing allyl groups (DBPA‐Ph) had been synthesized via the reaction of diallyl bisphenol A (DBPA) and 4‐nitrophthalonitrile. The chemical structure of DBPA‐Ph was confirmed by 1 HNMR, 13 CNMR, and FTIR spectroscopy. The curing behaviors and processability of DBPA‐Ph were studied by differential scanning calorimetry (DSC) and dynamic rheological analysis. The monomer manifested a two‐stage thermal polymerization pattern. The first stage was attributed to the polymerization of allyl groups and the second to the ring‐form polymerization of cyano groups. The result of dynamic rheological analysis indicated the monomer had wide curing window and the self‐catalyzed curing behavior. DBPA‐Ph polymers were prepared from the thermal polymerization with short curing time, showing high glass transition temperature (>350°C) and attractive thermal decomposition temperature (>430°C). The outstanding glass transition temperature, desirable thermo‐oxidative stabilities, good processability and sound process conditions could provide more applications to the DBPA‐Ph polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 41203.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here