Premium
Phase separation to create hydrophilic yet non‐water soluble PLA/PLA‐b‐PEG fibers via electrospinning
Author(s) -
Buttaro Larissa M.,
Drufva Erin,
Frey Margaret W.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.41030
Subject(s) - peg ratio , ethylene glycol , materials science , electrospinning , chemical engineering , polylactic acid , polymer chemistry , nanofiber , crystallization , copolymer , polymer , composite material , finance , engineering , economics
In moisture wicking fabrics, fibers with hydrophilic surfaces that are also non‐water soluble are desirable. In poly(lactic acid), PLA, fibers it is expected that the addition of poly(ethylene glycol), PEG, will monotonically increase their wicking rates. In this paper, phase separation was used to create biocompatible, biodegradable, hydrophilic yet non‐water soluble fibers by electrospinning PLA with PEG and PLA‐b‐PEG copolymers. By tuning the thermoelectric parameters of the apparatus, and the chemical properties of the dopes, the amount of PEG in the fibers was improved over prior work; concentration increased by 60% (by weight, wt %) to 16 wt % in the PLA fiber. Instead of the expected increasing wicking rates with PEG concentration, there is a peak at 12 wt %; at greater concentrations, wicking decreases due to PEG crystallization within the PLA (verified via DSC). At 12 wt % PEG from copolymers, the nanofabric's wettability increases to 1300% its original weight. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 41030.