z-logo
Premium
UV–Vis irradiation fatigue resistance improvement of azo photochromic compound using polyurethane‐chitosan double shell encapsulation
Author(s) -
Fan Fei,
Wang Chaoxia
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40895
Subject(s) - polyurethane , chitosan , materials science , nanocapsules , polymer chemistry , glutaraldehyde , photochromism , chemical engineering , composite material , nanoparticle , chemistry , organic chemistry , nanotechnology , engineering
ABSTRACT Double shell photochromic microcapsules were prepared by in situ polymerization with polyurethane and chitosan as inner and outer shell respectively. FT‐IR indicated that chitosan‐glutaraldehyde copolymer formed by imine and combined with polyurethane photochromic nanocapsules. The polyurethane‐chitosan microcapsules exhibited a near‐spherical shape, and the average particle size of nanocapsules was around 1.2 μm. The half‐life of azo compound increased from 135 to 340 min after encapsulated in polyurethane‐chitosan microcapsules. The polyurethane‐chitosan shell delayed the coloration process for 14 s compared with azo compound in ethanol, however, the absorbance of azo compound increased by 17.15% in polyurethane‐chitosan microcapsules. It decreased from 0.3486 to 0.1738 in ethanol during 20 s, however, it decreased from 0.4084 to 0.2625 in polyurethane‐chitosan microcapsules in 55 s when it reached steady state during decoloration process. Polyurethane‐chitosan double shell encapsulation is an effective route for improving the fatigue resistance, increasing the absorbance of azo compound. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40895.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here