Premium
Antibacterial activity against Escherichia coli of Cu‐BTC (MOF‐199) metal‐organic framework immobilized onto cellulosic fibers
Author(s) -
Rodríguez Haendel S.,
Hinestroza Juan P.,
OchoaPuentes Cristian,
Sierra Cesar A.,
Soto Carlos Y.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40815
Subject(s) - cellulosic ethanol , cellulose , cellulose fiber , materials science , antibacterial activity , metal organic framework , substrate (aquarium) , chemical engineering , nuclear chemistry , polymer chemistry , chemistry , organic chemistry , bacteria , oceanography , adsorption , biology , engineering , genetics , geology
A strong antimicrobial activity against Escherichia coli of Cu‐BTC metal‐organic frameworks immobilized over cellulosic fibers is hereby reported. The in situ synthesis of Cu‐BTC metal‐organic frameworks, aka MOF‐199 or HKUST‐1, onto cellulosic substrates was carried out by exposing carboxymethylated cellulosic substrates to Cu(OAC) 2 , 1,3,5‐benzenetricarboxylic acid and triethylamine solutions following a very specific order. Using an in vitro model, in accordance to ASTM E2149‐13a, we observed that the cellulose‐MOF system was able to completely eliminate the growth of E. coli on agar plates and liquid cultures. The antibacterial activity of the comprising components of MOF‐199 and the cellulosic substrate was also evaluated and determined to be negligible. Since the method used to synthesize MOF‐199 crystals provides a strong bond between the crystals and the cellulosic substrates, the crystals not detach from the anionic cellulosic fibers allowing the modified textile to be washed and reused hence opening a new avenue to fabricate antibacterial clinical fabrics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40815.