z-logo
Premium
Crystallization and thermal properties of biodegradable polyurethanes based on poly[(R)‐3‐hydroxybutyrate] and their composites with chitin whiskers
Author(s) -
Saad Gamal R.,
Salama Hend E.,
Mohamed Nadia A.,
Sabaa Magdy W.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40784
Subject(s) - crystallization , materials science , whiskers , thermal stability , hexamethylene diisocyanate , diol , differential scanning calorimetry , polymer chemistry , activation energy , glass transition , thermal decomposition , amorphous solid , chemical engineering , nuclear chemistry , composite material , polyurethane , polymer , chemistry , crystallography , organic chemistry , physics , engineering , thermodynamics
A series of biodegradable polyurethanes (PUs) were synthesized from hydroxylated bacterial poly[(R)‐3‐hydroxybutyrate], P[(R)‐HB]‐diol, as crystallizable hard segment and hydroxyl‐terminated synthetic poly[(R,S)‐3‐hydroxybutyrate), P[(R,S)‐HB]‐diol, as an amorphous soft segment, using 1,6‐hexamethylene diisocyanate, as non‐toxic connecting agent. The P[(R)‐HB] content was varied from 30 to 70 wt %. The resulting copolymers were characterized by FT‐IR, 1 H‐NMR, DSC, and TGA. The DSC data revealed that the melting of P[(R)‐HB] segment increases with increasing its own content in the PUs. The cold and melt crystallization are enhanced with increasing P[(R)‐HB] content. The TGA data revealed that the thermal decomposition mainly occurred via a single degradation step and the thermal stability slightly increased with increasing P[(R)‐HB] content. The non‐isothermal crystallization behavior of PU sample containing 40 wt % PHB with and without α‐Chitin whiskers was studied using DSC, and their kinetics data were investigated via the Avrami, Ozawa, and Z.S. Mo methods, respectively. Crystallization activation energy was estimated using Kissinger's method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40784.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here