Premium
Method for time–temperature–transformation diagrams using DSC data: Linseed aliphatic epoxy resin
Author(s) -
RestrepoZapata Nora Catalina,
Osswald Tim A.,
HernándezOrtiz Juan P.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40566
Subject(s) - differential scanning calorimetry , epoxy , activation energy , thermodynamics , isothermal process , materials science , kinetics , diffusion , glass transition , isothermal transformation diagram , polymer chemistry , chemistry , composite material , polymer , physics , microstructure , austenite , bainite , quantum mechanics
A novel method to generate time–temperature–transformation (TTT) diagrams from Differential Scanning Calorimetry (DSC) data is presented. The methodology starts with dynamical DSC information to obtain the total transformation heat, followed by an isothermal‐dynamic temperature ramp that allows the inclusion of diffusion‐controlled reaction kinetic. The cure kinetics is modeled using an auto‐catalytic Kamal–Sourour model, complemented with a Kissinger model that allows the direct prediction of one energy of activation, DiBenedetto's equation for the glass transition temperature as a function of the cure degree and adjusted reaction constants to include diffusion mechanisms. The methodology uses a nonlinear least‐squares regression method following J.P. Hernández‐Ortiz and T.A. Osswald's methodology (J. Polym. Eng. 2004, 25, 23). A typical linseed epoxy resin (EP) presents two different kinetics control mechanisms, thereby providing a good model to validate the proposed experimental and theoretical method. TTT diagrams for EPs at two different accelerator concentrations are calculated from direct integration of the kinetic model. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40566.