z-logo
Premium
Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: Water interactions and thermomechanical properties
Author(s) -
Peresin Maria Soledad,
Vesterinen ArjaHelena,
Habibi Youssef,
Johansson LeenaSisko,
Pawlak Joel J.,
Nevzorov Alexander A.,
Rojas Orlando J.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40334
Subject(s) - materials science , vinyl alcohol , dynamic mechanical analysis , differential scanning calorimetry , cellulose , maleic anhydride , nanofiber , thermogravimetric analysis , chemical modification , chemical engineering , electrospinning , composite material , fiber , composite number , polymer chemistry , fourier transform infrared spectroscopy , aqueous solution , solvent , polymer , organic chemistry , chemistry , copolymer , physics , engineering , thermodynamics
Acid‐catalyzed vapor phase esterification with maleic anhydride was used to improve the integrity and thermo‐mechanical properties of fiber webs based on poly(vinyl alcohol), PVA. The fibers were produced by electrospinning PVA from aqueous dispersions containing cellulose nanocrystals (CNCs). The effect of esterification and CNC loading on the structure and solvent resistance of the electrospun fibers was investigated. Chemical characterization of the fibers (FTIR, NMR) indicated the formation of ester bonds between hydroxyl groups belonging to neighboring molecules. Thermomechanical properties after chemical modification were analyzed using thermal gravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. An 80% improvement in the ultimate strength was achieved for CNC‐loaded, crosslinked PVA fiber webs measured at 90% air relative humidity. Besides the ultra‐high surface area, the composite PVA fiber webs were water resistant and presented excellent mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40334.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here