z-logo
Premium
Melt spinning and drawing of polyethylene nanocomposite fibers with organically modified hydrotalcite
Author(s) -
Fambri Luca,
Dabrowska Izabela,
Pegoretti Alessandro,
Ceccato Riccardo
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40277
Subject(s) - materials science , high density polyethylene , nanocomposite , composite material , exfoliation joint , ultimate tensile strength , polyethylene , thermal stability , hydrotalcite , composite number , extrusion , masterbatch , intercalation (chemistry) , crystallization , melt spinning , spinning , chemical engineering , graphene , chemistry , inorganic chemistry , biochemistry , engineering , nanotechnology , catalysis
Fibers of high density polyethylene (HDPE)/organically modified hydrotalcite (LDH) were produced by melt intercalation in a two‐step process consisting of twin‐screw extrusion and hot drawing. The optimum drawing temperature was 125°C at which the draw ratios up to 20 could be achieved. XRD analysis revealed intercalation with a high degree of exfoliation for the composites with 1–2% of LDH. Higher thermal stability of nanofilled fibers was confirmed by TGA analysis. DSC data indicated that dispersed LDH particles act as a nucleating agent. Crystallization kinetics of the HDPE matrix in the composite fibers is characterized by two transition temperatures, that is, for Regimes I/II at 123°C and for Regimes II/III ranging between 114–119°C as a function of the nanocomposite composition. Fibers with 1–2% of LDH show for the drawing ratios up to 15 a higher elastic modulus, 9.0–9.3 GPa (with respect to 8.0 GPa of the neat HDPE), maintain tensile strength of 0.8 GPa and deformation at break of 20–25%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40277.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom