Premium
Behavior of cellulose liquefaction after pretreatment using ionic liquids with water mixtures
Author(s) -
Wang Qingyue,
Chen Qiyu,
Mitsumura Naoki,
Animesh Sarkar
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40255
Subject(s) - cellulose , liquefaction , ionic liquid , chemistry , chemical engineering , materials science , phenol , nuclear chemistry , polymer chemistry , organic chemistry , catalysis , engineering
Ionic liquid (IL)‐water mixtures were applied in cellulose pretreatment experiment and the pretreated cellulose was used in subsequent phenol liquefaction process as a new application method. Cellulose recovery rate and the average molecular weight ( M w ) of pretreated cellulose were investigated to understand the influence of these mixtures on cellulose structure. X‐ray diffraction, Fourier transform infrared, gel permeation chromatograph, and scanning electron microscope were used to clarify the changes of pretreated cellulose. The liquefied residues from untreated cellulose and pretreated cellulose were considered as significant index to determine the effect of IL‐water mixtures on cellulose. Moreover, liquefied residues were initially characterized by the variation of the average M w . It was suggested that the lower M w of cellulose obtained in IL‐water mixtures, and the crystalline structure was disrupted. So, some cracks were found on the cellulose surface obviously. The liquefied residues result suggested that the pretreated cellulose obtained the lower residues at the same time or the same amount of residues by using the less time. The behavior of cellulose liquefaction efficiency using IL‐water mixture pretreatment was discussed. The lower M w of cellulose was the major factor, which accelerates the cellulose phenol liquefaction process efficiency. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40255.