Premium
Synthesis and characterization of a soybean oil‐based macromonomer
Author(s) -
Delatte David,
Kaya Ethem,
Kolibal Laura G.,
Mendon Sharathkumar K.,
Rawlins James W.,
Thames Shelby F.
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.40249
Subject(s) - macromonomer , comonomer , materials science , copolymer , emulsion polymerization , polymer chemistry , acrylate , polymerization , monomer , chemical engineering , polymer , methyl methacrylate , glass transition , methacrylate , composite material , engineering
An acrylate‐functional soybean oil‐based macromonomer (SoyAA‐1) was synthesized in high yields utilizing sequential amidation and acrylation processes to serve as an internal plasticizer in emulsion polymers. The structure and structure–property relationships of this unique macromonomer were validated with FTIR, NMR, and LC‐MS. The viability of SoyAA‐1 as a comonomer in emulsion polymerization was established via copolymerization with methyl methacrylate (MMA) at varying copolymer weight compositions. The effect of increasing SoyAA‐1 levels and concomitantly higher allylic functionality was measured through film coalescence, minimum film forming temperature, and initial and progressively increasing glass transition temperature(s). The results indicate that synthetic modification of a renewable resource, soybean oil, can yield a valuable monomer that can be copolymerized in high yields via emulsion polymerization to produce practical and mechanically stable latexes for a variety of coatings applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40249.