Premium
Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking semi‐interpenetrating network
Author(s) -
Lin Qinghua,
Zheng Yudong,
Ren Lingling,
Wu Jian,
Wang Hong,
An Jiaxin,
Fan Wei
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39848
Subject(s) - composite number , cellulose , materials science , bacterial cellulose , composite material , sodium alginate , sodium , chemical engineering , polymer chemistry , engineering , metallurgy
A novel ionic crosslinking sodium alginate (SA)/carboxymethylated bacterial cellulose (CM‐BC) composite with a semi‐interpenetrating polymer network (semi‐IPN) structure was developed in this study. The composite was prepared through the blending of an SA gel with CM‐BC then crosslinking by Ca 2+ followed by a freeze‐drying process. Scanning electron microscopy showed the composite matrix organized in a three‐dimensional network of CM‐BC interpenetrated against SA molecular chains with a quantity of calcium alginate microspheres upon the surface. The swelling ratios of the composite were enhanced by 183, 198, and 212% with the supplementation of CM‐BC weight fractions of 25, 50, and 75%, respectively; the swelling ratios changed with changing pH. The tensile modulus, tensile strength, and elongation at break of SA were enhanced by 165, 152, and 188%, respectively, with the addition of 50 wt % CM‐BC. This study demonstrated that the semi‐IPN structure dramatically changed the swelling and mechanical properties of the composite, and the semi‐IPN will be a promising candidate for biomedical applications such as wound dressings and skin tissue engineering. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 39848.