Premium
UV‐initiated copolymerization route for facile fabrication of epoxy‐functionalized micro‐zone plates
Author(s) -
Li Li,
Bi XiaoDong,
Feng Min,
Zhu JiaTing
Publication year - 2014
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39787
Subject(s) - epoxy , materials science , glycidyl methacrylate , copolymer , fabrication , x ray photoelectron spectroscopy , chemical engineering , polymer , monomer , polymer chemistry , composite material , medicine , alternative medicine , pathology , engineering
ABSTRACT Bisphenol A‐based epoxy acrylate (BABEA), a commercial ultraviolet (UV)‐curable material, was introduced as a new manufacturing material for facile fabrication of epoxy‐functionalized micro‐zone plates through UV‐initiated copolymerization using glycidyl methacrylate (GMA) as the functional monomer. The poly (BABEA‐ co ‐GMA) was highly transparent in visible range while highly opaque when the wavelength is less than 295 nm, and of high replication fidelity. X‐ray photoelectron spectroscope (XPS) results indicated the existence of epoxy groups on the surface of the poly (BABEA‐ co ‐GMA), which allowed for binding protein through an epoxy‐amino group reaction. A fabrication procedure was proposed for manufacturing BABEA based epoxy‐functionalized micro‐zone plates. The fabrication procedure was very simple; obviating the need of micromachining equipments, wet etching or imprinting techniques. To evaluate the BABEA‐based epoxy‐functionalized micro‐zone plates, α‐fetoprotein (AFP) was immobilized onto the capture zone for chemiluminescent (CL) detection in a noncompetitive immune response format. The proposed AFP immunoaffinity micro‐zone plate was demonstrated as a low cost, flexible, homogeneous, and stable assay for α‐fetoprotein (AFP). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 39787.