z-logo
Premium
Synthesis and characterization of poly(caprolactone triol succinate) elastomer for tissue engineering application
Author(s) -
Harmon Matthew D.,
James Roshan,
Shelke Namdev B.,
Kumbar Sangamesh G.
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39633
Subject(s) - caprolactone , elastomer , polycaprolactone , triol , materials science , osteoblast , alkaline phosphatase , polymer chemistry , polyester , ultimate tensile strength , polymer , elongation , adhesion , condensation polymer , tissue engineering , polybutylene succinate , in vitro , chemical engineering , chemistry , copolymer , biomedical engineering , diol , biochemistry , composite material , enzyme , medicine , engineering
A novel polymer poly(caprolactone triol succinate) (PPCLSu) was synthesized from monomers polycaprolactone triol and succinic acid by direct polycondensation. The tensile strength of PPCLSu was found to be 0.33 ± 0.03 MPa with an elongation of 47.8 ± 1.9%. These elastomers lost about 7% of their original mass in an in vitro degradation study conducted in phosphate‐buffered saline (PBS) at 37°C up to 10 weeks. Three‐dimensional (3D) porous scaffolds were created by a porogen‐leaching method and these constructs were evaluated for primary rat osteoblast (PRO) proliferation and phenotype development in vitro . This elastomer promoted primary rat osteoblast adhesion, proliferation and increased expression of alkaline phosphatase, an early marker of osteoblastic phenotype. These preliminary results suggest that PPCLSu may be a good candidate material for scaffolding applications in tissue regeneration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3770–3777, 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom