Premium
Mechanical and thermal properties of bio‐based CaCO 3 /soybean‐based hybrid unsaturated polyester nanocomposites
Author(s) -
Hassan Tarig A.,
Rangari Vijaya K.,
Jeelani Shaik
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39227
Subject(s) - nanocomposite , materials science , composite material , nanoparticle , glass transition , dynamic mechanical analysis , thermal decomposition , chemical engineering , polymer , nanotechnology , chemistry , organic chemistry , engineering
Bio‐based calcium carbonate nanoparticles (CaCO 3 ) were synthesized via size reduction of eggshell powder using mechanical attrition followed by high intensity ultrasonic irradiation. The transmission electron microscopic (TEM) and BET surface area measurements show that these particles are less than 10 nm in size and a surface area of ∼44 m 2 /g. Bio‐based nanocomposites were fabricated by infusion of different weight fractions of as‐prepared CaCO 3 nanoparticles into Polylite® 31325‐00 resin system using a non‐contact Thinky® mixing method. As‐prepared bio‐nanocomposites were characterized for their thermal and mechanical properties. TEM studies showed that the particles were well dispersed over the entire volume of the matrix. Thermal analyses indicated that the bio‐nanocomposites are thermally more stable than the corresponding neat systems. Nanocomposite with 2% by weight loading of bio‐CaCO 3 nanoparticles exhibited an 18°C increase in the glass transition temperature over the neat Polylite 31325 system. Mechanical tests have been carried out for both bio‐nanocomposites and neat resin systems. The compression test results of the 2% Bio‐CaCO 3 /Polylite 31325 nanocomposite showed an improvement of 14% and 27% in compressive strength and modulus respectively compared with the neat system. Details of the fabrication procedure and thermal and mechanical characterizations are presented in this article. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1442–1452, 2013