Premium
The use of poly (ε‐caprolactone) to enhance the mechanical strength of porous Si‐substituted carbonate apatite
Author(s) -
Bang Le Thi.,
Kawachi Giichiro,
Nakagawa Masaharu,
Munar Melvin,
Ishikawa Kunio,
Othman Radzali
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39164
Subject(s) - materials science , porosity , ultimate tensile strength , biocomposite , composite material , composite number , apatite , chemical engineering , engineering
Poly(ε‐caprolactone) (PCL)/silicon‐substituted carbonate apatite (Si‐CO3Ap) composite derived from the interconnected porous Si‐CO3Ap reinforced with molten PCL was prepared. PCL was used to improve the mechanical properties of a porous apatite by a simple polymer infiltration method, in which the molten PCL was deposited through the interconnected channel of porous Si‐CO3Ap. The PCL covered and penetrated into the pores of the Si‐CO3Ap to form an excellent physical interaction with Si‐CO3Ap leading to a significant increase in diametral tensile strength from 0.23 MPa to a maximum of 2.04 MPa. The Si‐CO3Ap/PCL composite has a porosity of about 50–60% and an interconnected porous structure, with pore sizes of 50–150 μm which are necessary for bone tissue formation. These results could pave the way for producing a porous, structured biocomposite which could be used for bone replacement. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013