z-logo
Premium
HNBR/EPDM blends: Covulcanization and compatibility
Author(s) -
Shi Xinyan,
Zhu Zhu,
Jia Lingyan,
Li Qi,
Bi Weina
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39014
Subject(s) - materials science , vulcanization , ultimate tensile strength , natural rubber , composite material , elongation , epdm rubber , curing (chemistry) , peroxide , sulfur , nitrile rubber , chemistry , organic chemistry , metallurgy
The covulcanization characteristics, mechanical properties, compatibility, and hot‐air aging resistance of hydrogenated nitrile‐butadiene rubber (HNBR)/ethylene‐propylene‐diene rubber (EPDM) blends cured with either sulfur or dicumyl peroxide (DCP) were studied. The difference between M H and M L ( M H − M L ), rheometer graphs, selective swelling and a dynamic mechanical analysis of HNBR/EPDM blends confirmed that the peroxide curing system gives better covulcanization characteristics than the sulfur curing system and peroxide exhibited higher crosslink efficiency on EPDM while sulfur showed larger crosslink efficiency on HNBR. Dynamic mechanical analysis and morphology indicated that the compatibility between HNBR and EPDM is limited. Tensile strength and elongation at break of the sulfur‐cured blends are greater than those obtained with peroxide and increase with the HNBR fraction. The blends crosslinked with peroxide retain their tensile strength but not their elongation at break after hot air ageing better than blends vulcanized by sulfur. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here