z-logo
Premium
Current application of controlled degradation processes in polymer modification and functionalization
Author(s) -
Gumel Ahmad Mohamad,
Annuar M. Suffian M.,
Heidelberg Thorsten
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.39006
Subject(s) - surface modification , polymer , materials science , degradation (telecommunications) , polymer degradation , polyhydroxyalkanoates , crystallinity , chemical engineering , nanotechnology , computer science , composite material , telecommunications , engineering , biology , bacteria , genetics
Ecological concerns over the accumulation of polymeric waste material and the demand for functionalized polymers in specialty applications have promoted extensive research on different controlled degradation processes and their use. The production of functionalized or modified polymers by conventional synthetic routes is expensive and time consuming. However, advances in degradation technology have become an enabling factor in the production of modified polymers and their functionalization. Mild irradiation, ozonization, and enzymatic routes are among the processes that have been explored for polymer modification. Biopolymers, such as chitosan, hyaluronic acids, and polyhydroxyalkanoates, are known to be suitable for a diverse number of applications, ranging from biomedical to organic‐electronics. At the same time, their high molecular weight, crystallinity, and shelf degradability limit their utility. Controlled degradation processes can be used to prepare these types of polymers with reasonably low molecular weights and to generate radical species that help to stabilize these polymers or to initiate further beneficial reactions. In this article, we review the application of controlled degradation processes for polymer modification and functionalization. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here