Premium
Processing and characterization of injection moldable polymer–particle composites applicable in brazing processes
Author(s) -
Kirchberg Stefan,
Holländer Ulrich,
Möhwald Kai,
Ziegmann Gerhard,
Bach FriedrichWilhelm
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38862
Subject(s) - materials science , composite material , polymer , polypropylene , crystallinity , polyethylene , composite number , low density polyethylene , brazing , high density polyethylene , molding (decorative) , particle (ecology) , dynamic mechanical analysis , oceanography , alloy , geology
A novel method has been developed to process highly filled polymer–particle composites to test samples as braze metal preforms. Polypropylene (PP), low‐density polyethylene (LD‐PE) and high‐density polyethylene (HD‐PE) were used as polymer matrices. Two types of nickel‐based braze metal microparticles (Ni 102 and EXP 152) were compounded to the polymer matrices at filler contents up to 65 vol %. With enhancing filler content, torque at kneading rotors, and injection molding parameter were significantly affected by increasing viscosity. Injection molded composites show well‐distributed spherical microparticles and particle–particle interactions. Polymers decompose residue‐free at temperatures above 550°C, even for their composites. Adding particles reduces polymer crystallinity, whereas defined cooling at 5°C/min significantly increases the crystallinity and melt peak temperature of polymers compared to undefined cooling prior injection molding. Storage modulus of polymers increases significantly by adding filler particles. LD‐PE + 65 vol % EXP 152 show the most suitable composite performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013