z-logo
Premium
Adsorption of lactic acid onto three ionic liquid‐modified porous polymers
Author(s) -
Tang Baokun,
Tian Minglei,
Row Kyung Ho
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38813
Subject(s) - adsorption , polymer , freundlich equation , langmuir , lactic acid , chemical engineering , ionic liquid , ionic strength , langmuir adsorption model , materials science , polymer chemistry , kinetics , chemistry , organic chemistry , catalysis , aqueous solution , biology , bacteria , engineering , genetics , physics , quantum mechanics
Three ionic liquid (IL)‐modified porous polymers were synthesized and used for the adsorption of lactic acid. The experimental adsorption kinetics and equilibrium data from the IL‐modified polymers were obtained. The kinetic study revealed a low temperature to be advantageous to the adsorption process. The dependence of the level of lactic acid adsorption on the amount of polymer, initial lactic acid concentration, and pH was examined at equilibrium. The maximum efficiency was obtained using the maximum adsorbent dose. A comparison of lactic acid adsorption at different pH revealed anion exchange to be the main interaction between the lactic acid and polymers, not molecular adsorption. The amounts adsorbed were fitted to the Langmuir, Freundlich, and Temkin equations. The equilibrium data for modified polymers (imidazole modified polymer, methylimidazole modified polymer, and ethylimidazole modified polymer) were best represented by the Langmuir and Freundlich isotherm with R 2 values of 0.99. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here