z-logo
Premium
Effect of hydrolysis and denaturation of wheat gluten on adhesive bond strength of wood joints
Author(s) -
D'Amico Stefano,
Müller Ulrich,
Berghofer Emmerich
Publication year - 2013
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38686
Subject(s) - adhesive , ultimate tensile strength , materials science , composite material , bond strength , hydrolysis , sodium hydroxide , solubility , curing (chemistry) , gluten , hardening (computing) , flexural strength , chemistry , organic chemistry , food science , layer (electronics)
In this study the adhesive bond strength of different wheat gluten modifications and the relationship between molecular weight and adhesive strength was examined. Guanidine hydrochloride and sodium hydroxide were used as denaturation and dispersing agent. Additionally wheat proteins were hydrolyzed by alkaline conditions and enzymes. Effects of different treatments were observed by viscosity measurements and gel electrophoresis. Wood lap joints were prepared with modified proteins and tensile shear strength was tested under dry and wet conditions. In situ hardening of different formulations was analyzed by means of DMA with two‐layered specimens in a three‐point bending test set‐up. Higher solubility had no positive effect on dry bonding strength and wet bonding strength was even reduced. Depending on the degree of hydrolysis, significant improvement of adhesive bond strength was observed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here