Premium
Biobased thermosetting resins composed of terpene and bismaleimide
Author(s) -
Shibata Mitsuhiro,
Asano Masanori
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38477
Subject(s) - thermosetting polymer , maleimide , myr , materials science , copolymer , flexural strength , polymer chemistry , dynamic mechanical analysis , diels–alder reaction , fourier transform infrared spectroscopy , composite material , chemistry , organic chemistry , chemical engineering , polymer , catalysis , genome , engineering , gene , biochemistry
Abstract Prepolymers prepared by reactions of 1,1′‐(methylenedi‐4,1‐phenylene)bismaleimide (BMI) with myrcene (Myr) and limonene (Lim) in 1,3‐dimethyl‐2‐imidazolidinone (DMI) at 150°C were compressed at 250°C to produce crosslinked Myr/BMI [molar ratio = 2:2–2:5 (MB22–MB25)] and Lim/BMI [molar ratio = 1:1 (LB11)] resins. The 1 H‐NMR analysis of the model reaction products of Lim and Myr with N ‐phenyl maleimide (PMI) in DMI at 150°C revealed that a Diels–Alder reaction for Myr/PMI and a vinyl copolymerization for Lim/PMI preferentially proceeded in addition to the occurrence of the ene reaction to some extent. The Fourier transform infrared data of the cured resins were consistent with the results of the model reactions. All of the cured resins, except for MB22, showed tan δ peak values and 10% weight loss temperatures that were higher than 330 and 440°C, respectively. The flexural strength and modulus values of the MBs were higher than those of LB11. Field emission scanning electron microscopy analysis revealed that MB22–MB24 were homogeneous, whereas some combined particles appeared in LB11. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013