z-logo
Premium
Macromolecular sorbent materials for urea capture
Author(s) -
Wilson Lee D.,
Xue Chen
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38247
Subject(s) - copolymer , glutaraldehyde , sorption , chitosan , urea , sorbent , polymer chemistry , aqueous solution , adsorption , nuclear chemistry , materials science , thermogravimetry , fourier transform infrared spectroscopy , chemistry , chemical engineering , organic chemistry , inorganic chemistry , polymer , engineering
Three types of chitosan–glutaraldehyde (Chi–Glu) crosslinked copolymer materials were prepared at various Chi–Glu weight ratios (i.e., 1 : 0.0835, 1 : 0.334, and 1 : 0.585) and variable reaction times. The corresponding Chi–Glu copolymer materials were imbibed in CuSO 4 solution to yield impregnated materials in the form of copolymer/Cu(II) complexes. The copolymer materials were characterized using FTIR spectroscopy and thermogravimetry analysis. Urea sorption isotherms were obtained in aqueous solution at 295 K and pH 7 with pristine chitosan, Chi–Glu copolymers (i.e., 1 : 0.0835 and 1 : 0.585), and the corresponding Chi–Glu/Cu(II) complexes. The concentration of unbound urea was monitored indirectly using a colorimetric method with p ‐dimethylaminobenzaldehyde. The equilibrium adsorption data were analyzed using the Sips isotherm model. The uptake of urea with pristine chitosan was 4.7% w/w, whereas Chi–Glu copolymers display increased sorption ( Q m = 10.6–17.1% w/w) with increasing glutaraldehyde content. Urea sorption is further enhanced ( Q m = 16.3–26.4% w/w) for copolymer Chi–Glu/Cu(II) complexes. The preparation of Chi–Glu copolymers at various conditions illustrates that the sorption capacity and molecular recognition of urea can be systematically tuned via crosslinking and the formation of copolymer/Cu(II) complexes, and these results are related to a previously reported study (Shimizu and Fujishige, J. Biomed. Mater. Res . 1983, 17, 597). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom