z-logo
Premium
Carbon/polymer composite counter‐electrode application in dye‐sensitized solar cells
Author(s) -
Zhang Xueni,
Zhang Jing,
Cui Yanzheng,
Feng Jiangwei,
Zhu Yuejin
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38147
Subject(s) - carbon black , materials science , dye sensitized solar cell , carbon fibers , triiodide , auxiliary electrode , polymer , chemical engineering , composite number , electrode , composite material , polymer chemistry , electrolyte , chemistry , natural rubber , engineering
Carbon black was embedded in mixtures of poly(ethylene oxide) and poly(vinylidene fluoride–hexafluoropropylene) to make a carbon/polymer composite slurry, which was deposited onto a transparent conducting glass substrate by a doctor‐blade coating for application in dye‐sensitized solar cells (DSSCs) as a counter‐electrode (CE) material. The experiments indicated that the photovoltaic parameters of the DSSCs were strongly dependent on the carbon concentration in the slurry. The device with a carbon CE whose mass ratio was 1 : 1 (mass ratio = carbon black mass to polymer mass) exhibited an overall energy conversion efficiency of 4.62%; this was comparable to that of a device with platinum as a CE (5.32%) under the same test conditions. The better electrocatalytic activity of CE‐1.0 (where 1.0 indicates the mass ratio of carbon black to polymer) for the reduction of triiodide resulted a higher performance of the DSSC with such a CE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here