z-logo
Premium
Carbon/polymer composite counter‐electrode application in dye‐sensitized solar cells
Author(s) -
Zhang Xueni,
Zhang Jing,
Cui Yanzheng,
Feng Jiangwei,
Zhu Yuejin
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.38147
Subject(s) - carbon black , materials science , dye sensitized solar cell , carbon fibers , triiodide , auxiliary electrode , polymer , chemical engineering , composite number , electrode , composite material , polymer chemistry , electrolyte , chemistry , natural rubber , engineering
Carbon black was embedded in mixtures of poly(ethylene oxide) and poly(vinylidene fluoride–hexafluoropropylene) to make a carbon/polymer composite slurry, which was deposited onto a transparent conducting glass substrate by a doctor‐blade coating for application in dye‐sensitized solar cells (DSSCs) as a counter‐electrode (CE) material. The experiments indicated that the photovoltaic parameters of the DSSCs were strongly dependent on the carbon concentration in the slurry. The device with a carbon CE whose mass ratio was 1 : 1 (mass ratio = carbon black mass to polymer mass) exhibited an overall energy conversion efficiency of 4.62%; this was comparable to that of a device with platinum as a CE (5.32%) under the same test conditions. The better electrocatalytic activity of CE‐1.0 (where 1.0 indicates the mass ratio of carbon black to polymer) for the reduction of triiodide resulted a higher performance of the DSSC with such a CE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom