Premium
Mechanical properties of surface‐treated banana fiber/polylactic acid biocomposites: A comparative study of theoretical and experimental values
Author(s) -
Jandas P. J.,
Mohanty S.,
Nayak S. K.
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37978
Subject(s) - polylactic acid , ultimate tensile strength , materials science , biocomposite , composite material , fiber , surface modification , izod impact strength test , modulus , response surface methodology , young's modulus , polymer , composite number , chemistry , chromatography
Current study evaluates the effect of fiber surface treatments on the mechanical properties of banana fiber (BF) reinforced polylactic acid (PLA) biocomposites. Experimental results indicate increase in tensile modulus and strength upon surface treatments of BF with various silanes (APS and Si69) and NaOH. Approximately, an increase of 136% in tensile strength and 49% in impact strength was obtained in case of biocomposites with Si69‐treated BF compared with the untreated BF biocomposites. Also, experimentally determined mechanical modulus of untreated and surface‐treated BF biocomposite has been compared with the mechanical modulus calculated using various micromechanical models. Models such as Hirsch's, modified Bawyer and Bader's, and Brodnyan model showed good agreement with the experimentally determined results. Similarly, other models like Halpin‐Tsai, Nielson modified Halpin‐Tsai, and Cox's model also have been tried for the comparative study with the experimental data. Surface modification of BF showed increased interfacial adhesion between the fiber and the matrix which was evident from lowered difference between the experimentally and theoretically derived mechanical modulus. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013