z-logo
Premium
Triazine‐containing benzoxazine and its high‐performance polymer
Author(s) -
Wang Dengxia,
Li Bin,
Zhang Yaoheng,
Lu Zaijun
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37816
Subject(s) - thermogravimetric analysis , differential scanning calorimetry , fourier transform infrared spectroscopy , thermal stability , limiting oxygen index , triazine , polymer chemistry , curing (chemistry) , polymerization , materials science , char , gel permeation chromatography , monomer , polymer , thermal analysis , nuclear chemistry , elemental analysis , chemistry , chemical engineering , organic chemistry , pyrolysis , composite material , thermal , physics , meteorology , engineering , thermodynamics
A new synthetic route was designed to significantly increase the content of triazine structure in benzoxazine resin. 2,4,6‐Tri(4‐hydroxylphenyl)‐13,5‐ s ‐triazine (TP) was synthesized by cyclotrimerization of 4‐cyanolphenol and then benzoxazine monomer‐containing triazine [2,4,6‐tri(3‐phenyl‐3,4‐dihydro‐2 H ‐1,3‐benzoxazin‐6‐yl)‐1,3,5‐ s ‐triazine (BZ‐ta)] was synthesized via Mannich reaction from TP. Finally, the cross‐linked polymer P(BZ‐ta) was produced by thermal polymerization of BZ‐ta. BZ‐ta was characterized by nuclear magnetic resonance spectroscopy (NMR), fourier transform infrared spectroscopy (FTIR), mass spectrum, elemental analysis, and viscosity measurement. Curing behavior of BZ‐ta was studied by differential scanning calorimetry, FTIR, and gel permeation chromatography. The structure and properties of P(BZ‐ta) were investigated by powder X‐ray diffraction, dynamic mechanical analysis, and thermogravimetric analysis. The results showed that the P(BZ‐ta) had high glass temperature ( T g = 322°C), excellent thermal oxidation stability (5 and 10% weight loss temperatures in air up to 403 and 453°C, respectively), high char yield (64%, 800°C in nitrogen), and high flame‐retardance (limiting oxygen index, 39.7). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here