Premium
Effects of the processing temperature on the nanostructure and mechanical properties of PCTG‐based nanocomposites
Author(s) -
Granado A.,
Eguiazábal J. I.,
Nazábal J.
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37810
Subject(s) - materials science , nanocomposite , composite material , amorphous solid , organoclay , transmission electron microscopy , dispersion (optics) , nanostructure , ductility (earth science) , dynamic mechanical analysis , polymer , nanotechnology , crystallography , chemistry , optics , physics , creep
The influence of the processing temperature on both the dispersion level and the mechanical properties of the amorphous copolyester (PCTG)/organoclay (Cloisite® 20A) nanocomposite (NC) is studied in this article. At high processing temperatures, no change in the chemical nature of the matrix was observed, but its molecular weight decreased. Widely dispersed structures were observed by wide angle X‐ray diffraction (WAXD) and transmission electron microscopy whatever the processing temperature might be. Dispersion was greatest for the samples processed at 200°C due to the highest viscosity of these samples and decreased at higher processing temperatures ( T p ). These different dispersion levels led to a large modulus increase (71%) after processing at 200°C and to lower ones (about 50%) after processing at 230 and 260°C. The ductility of the NCs decreased at lower processing temperatures. The decrease was attributed to the greater stiffness of the matrix, and was not significant enough to modify the ductile nature of the NCs, which showed clear yield points even at the lowest processing temperature (200°C). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013