z-logo
Premium
The effects of polyamic acid on curing behavior, thermal stability, and mechanical properties of epoxy/DDS system
Author(s) -
Yong Liu,
Wei Wu,
Yu Chen,
Pinpin Shi,
Mingchang Liu,
Xiang Wu
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37759
Subject(s) - epoxy , materials science , curing (chemistry) , composite material , thermal stability , toughness , fracture toughness , thermoplastic , polyimide , thermal decomposition , polymer chemistry , chemical engineering , chemistry , organic chemistry , layer (electronics) , engineering
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature ( T i ) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ∼ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here