z-logo
Premium
Study of uranium adsorption using amidoximated polyacrylonitrile‐encapsulated macroporous beads
Author(s) -
Singh Krishankant,
Shah Chetan,
Dwivedi Charu,
Kumar Manmohan,
Bajaj Parma N.
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37684
Subject(s) - polyacrylonitrile , uranium , adsorption , langmuir , desorption , freundlich equation , langmuir adsorption model , aqueous solution , nuclear chemistry , chemistry , materials science , chemical engineering , chromatography , polymer chemistry , organic chemistry , polymer , metallurgy , engineering
Abstract Polyacrylonitrile beads, containing the amidoximated polyacrylonitrile, were prepared for adsorption of uranium. The synthesized amidoximated polyacrylonitrile chelating beads were evaluated, for their ability to adsorb uranium from aqueous solution, at different temperatures and pH values. The kinetic measurement showed that about 120 min of equilibration time was enough, to remove saturation amount of uranium from the solution. The pseudo first‐order and pseudo second‐order equations were used to analyze the kinetic data, and the rate constants were determined. The equilibrium adsorption data were examined by the Langmuir, Freundlich, and Temkin isotherms. The data showed a better fit to the Langmuir isotherm. The loaded uranium could also be leached out from the beads, by treating with dilute acids. The uranium uptake capacity of the polymeric beads was found to be 3.5 mg/g of the swollen beads. Reusability of the beads was also established by multiple adsorption–desorption experiments. The pore volume and the surface area of the dried beads, measured by BET method, were found to be 1.93 cc/g and 320 m 2 /g, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here