Premium
Grafting polymer brushes on graphene oxide for controlling surface charge states and templated synthesis of metal nanoparticles
Author(s) -
Gao Tingting,
Ye Qian,
Pei Xiaowei,
Xia Yanqiu,
Zhou Feng
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37572
Subject(s) - atom transfer radical polymerization , materials science , graphene , nanoparticle , polymer chemistry , polymer , methacrylate , oxide , chemical engineering , zeta potential , grafting , polymerization , nanotechnology , composite material , engineering , metallurgy
In this article, poly[(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes were grafted onto graphene oxide (GO) sheet via noncovalent modification of pyrene terminated initiator and subsequent in situ surface‐initiated atom transfer radical polymerization (SI‐ATRP). The results of zeta‐potentials, dispersivity measurement as well as the permeability of cationic and anionic redox‐active probe molecules reveal that the as‐prepared GO/PDMAEMA composite exhibits zwitterionicity because of the presence of phenol hydroxyl, carboxyl, and amine groups and the charging state can be manipulated by controlling pH values. Furthermore, by ion exchange and in situ reduction, palladium and gold nanoparticles were successfully uploaded and the catalytic property of the uniformly distributed Pd‐Au nanoparticles on GO sheet was investigated. These results reported in this work may open primarily toward constructing a bridge among GO, charged polymer and metal nanoparticles and secondarily to represent a new strategy for uniformly depositing inorganic nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013