z-logo
Premium
Investigation of optical and thermally stimulated properties of SiO 2 nanoparticles‐filled polycarbonate
Author(s) -
Rathore Bhupendra Singh,
Gaur Mulayam Singh,
Singh Kripa Shanker
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.37004
Subject(s) - materials science , nanocomposite , differential scanning calorimetry , nanoparticle , polycarbonate , glass transition , crystallinity , analytical chemistry (journal) , polymer , chemical engineering , composite material , nanotechnology , chemistry , organic chemistry , physics , thermodynamics , engineering
Polycarbonate nanocomposite containing silicon oxide nanoparticles average size of 5 nm at different weight ratio has been prepared by solution mixing method. The dispersion of nanoparticles in polymer matrix was studied by transmission electron microscopy (TEM). The optical and thermally stimulated behavior of nanocomposites were analyzed by energy dispersive X‐ray spectra (EDX), X‐ray diffraction pattern (XRD), UV–vis spectroscopy, differential scanning calorimetry (DSC), and thermally stimulated discharge current (TSDC). TEM images show the dispersion and size of the nanoparticles, however, EDX indicate the presence of SiO 2 on the surface of the nanocomposite film. An XRD result reveals that the crystallinity increases with increase in concentration of SiO 2 nanoparticles in polymer matrix. The direct and indirect optical energy band gaps decreased and number of carbon atom increased with concentration of SiO 2 nanoparticles. We have observed that the increase of SiO 2 nanoparticles in PC significantly reduces the refractive index. DSC and TSDC show that glass transition temperature increases according to SiO 2 weight ratio. The TSDC of nanocomposites samples could be understand in terms of non‐Debye theory of charge relaxation and co‐tunneling mechanism of charge transport. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here