z-logo
Premium
Macroporous dehydroalanine polymer hydrogel with fast temperature response and high repetition durability
Author(s) -
Tezuka Yoshihiko,
Tanaka Hitoshi
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.36933
Subject(s) - self healing hydrogels , polymer , polymer chemistry , monomer , materials science , chemical engineering , swelling , polymerization , radical polymerization , durability , composite material , engineering
Thermoresponsive hydrogels based on poly(methyl 2‐isobutyramidoacrylate) (PMIBA) were prepared by free‐radical crosslinking polymerization of the corresponding monomer using N , N ′‐methylenebisacrylamide as a crosslinker. The PMIBA hydrogels showed a reversible temperature‐induced volume change with a volume phase transition temperature (VPTT) at 19°C, while they contained more than 60 wt % water even in the equilibrium deswollen state. When the external temperature was raised rapidly above the VPTT, the PMIBA gels shrank smoothly with time at a faster rate than conventional poly( N ‐isopropylacrylamide) hydrogels of the same size. The fast and smooth deswelling response of the PMIBA gel is ascribed to its sponge‐like structure with 0.1–1 µm pore sizes formed in the deswollen state. The smooth deswelling response due to the macroporous structure resulted in high durability against repeated changes in the external temperature. The PMIBA gel showed little degradation in the swelling ability when subjected to 50 times of thermal cycling across the VPTT. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here