z-logo
Premium
Surfactant‐modified feldspar: Isotherm, kinetic, and thermodynamic of binary system dye removal
Author(s) -
Yazdani Maryam,
Mahmoodi Niyaz Mohammad,
Arami Mokhtar,
Bahrami Hajir
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.36883
Subject(s) - adsorption , ammonium bromide , langmuir adsorption model , monolayer , pulmonary surfactant , binary system , langmuir , chemistry , sorbent , feldspar , thermodynamics , materials science , binary number , quartz , biochemistry , arithmetic , mathematics , physics , composite material
In this article, surface modification of feldspar using hexadecyltrimethyl ammonium bromide (HDTMA) and its dye removal ability in single and binary systems was studied. Acid Black 1 (AB1) and Acid Red 14 (AR14) were used as model dyes. The monocomponent Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for both dyes. The monolayer coverage capacities of surfactant‐modified feldspar (HDTMA‐feldspar) for AB1 and AR14 dyes in single solution system were found as 6.369 mg/g and 3.984 mg/g, respectively. It was observed that the equilibrium uptake amounts of AB1 and AR14 dye in binary mixture onto sorbent decreased with increasing concentrations of the other dye resulting in their antagonistic effect. Equilibrium adsorption for binary systems was analyzed by using the Extended Langmuir and Jain and Snoeyink Modified Extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto adsorbent was described by using two kinetics adsorption models. The pseudo‐second‐order model was the best choice among the kinetic models to describe the adsorption behavior of single and binary dyes onto HDTMA‐feldspar. Thermodynamic parameters showed that dye adsorption on HDTMA‐feldspar were exothermic and unspontaneous in nature. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here