Premium
Synthesis and characterizations of a latent polyhedral oligomeric silsequioxane‐containing catalyst and its application in polybenzoxazine resin
Author(s) -
Wang Lei,
Du Wenjie,
Wu Yixian,
Xu Riwei,
Yu Dingsheng
Publication year - 2012
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.36490
Subject(s) - curing (chemistry) , silsesquioxane , materials science , polymer chemistry , catalysis , enthalpy , composite material , chemical engineering , polymer , chemistry , organic chemistry , physics , quantum mechanics , engineering
In this article, a novel latent curing agent, octa(paratoluenesulfonic acid ammomium salt) (OPAAS) polyhedral oligomeric silsequioxane was synthesized and used in modifying the polybenzoxazine/2,2′‐(1,3‐phenylene)‐bis(4,5‐dihydro‐oxazoles) (PBO) (PBZ/PBO) resin. The liberated octa(aminophenyl) silsesquioxane and paratoluenesulfonic acid can catalyze the ring‐opening reaction of benzoxazine (BZ) resin. The initial curing temperature ( T i ), peak curing temperature ( T p ) and the Enthalpy of the curing temperature had significantly decreased with respect to pristine BZ/PBO resin. When the OPAAS amount was 3 wt %, the peak curing temperature decreased from 233.7 to 218.2°C. Also, PBZ/PBO/OPAAS composites exhibited better storage modulus than pure PBZ/PBO resin. Meanwhile, PBZ/PBO/OPAAS composites are more thermally stable than PBZ/PBO resin. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom