z-logo
Premium
Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4‐ cis ‐isoprene) blends
Author(s) -
Kowalczyk Marcin,
Piorkowska Ewa
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.35489
Subject(s) - crazing , materials science , natural rubber , toughness , composite material , isoprene , ultimate tensile strength , polymer , biodegradable polymer , brittleness , deformation (meteorology) , copolymer
Abstract Polylactide (PLA), a main representative of biodegradable and made from renewable resources polymers, is surprisingly brittle at ambient temperature. In this article it is investigated how to increase its toughness by a strategy called “rubber toughening” using poly(1,4‐ cis ‐isoprene), a major component of natural rubber, which is immiscible with PLA, could be well dispersed in PLA matrix and is biodegradable. Immiscible blends of PLA with poly(1,4‐ cis ‐isoprene) were prepared by melt blending and their properties were studied and optimized. Incorporation of as low as 5 wt % of rubber increased the strain at break of compression molded film during uniaxial drawing, and also improved its tensile impact strength by 80%. The complex mechanism of plastic deformation in the blends leading to improvement of ductility and toughness was revealed. The rubbery particles initiated crazing at the early stages of deformation, as evidenced by transmission and scanning electron microscopy and also by small angle X‐ray scattering. Crazing was immediately followed by cavitation inside rubber particles, which further promoted shear yielding of PLA. The sequence of those mechanisms was proven by microscopic investigation. All three elementary mechanisms acting in the sequence indicated are responsible for surprisingly efficient toughening of PLA by a major component of natural rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here