Premium
Relationship between the cell structure and mechanical properties of chemically crosslinked polyethylene foams
Author(s) -
Davari M.,
Razavi Aghjeh M. K.,
Seraji S. M.
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.35267
Subject(s) - materials science , morphology (biology) , composite material , polyethylene , cell size , peroxide , chemistry , genetics , biology , microbiology and biotechnology , organic chemistry
The main objective of this work was to study the effect of the controlling parameters on the morphology and mechanical properties of the peroxide crosslinked low‐density polyethylene foams. The relationship between the morphology and mechanical properties was also considered. Using different Dicumyl peroxide (DCP) and azodicrbonamide (ADCA) concentrations, various foams with different cell structures were prepared. Gel content and density of the foams were measured according to the standard methods. The morphology was examined using SEM technique. The mechanical properties of the foams were evaluated by means of compression and creep recovery tests. The results showed that the gel content and the density are mainly controlled by DCP and ADCA concentration, respectively. The results also showed that the cell size distribution is mainly controlled by DCP concentration. Increasing of DCP increased the gel content and decreased the cell size and cell size distribution. Foam density was mainly controlled by ADCA concentration, whereas the morphology was less affected with ADCA concentration. The foams with small cell size and narrow cell size distribution showed higher mechanical strength and lower plastic strain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012