z-logo
Premium
Preparation of polydimethylsiloxane‐coated α‐alumina fillers with cold plasma for elastomer thermal interface materials
Author(s) -
Liu Yu,
Zhang LiQun,
Wang WenCai,
Yu HaiTao,
Lu YongLai
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34856
Subject(s) - materials science , polydimethylsiloxane , composite material , thermogravimetric analysis , elastomer , silicone rubber , fourier transform infrared spectroscopy , ceramic , surface modification , filler (materials) , chemical engineering , engineering
Abstract A novel method for the organic modification of a ceramic thermal conductive filler (α‐alumina) with cold plasma was developed for the preparation of elastomer thermal interface materials with high thermal conductivities and low moduli. The α‐alumina fillers were first coated with low‐molecular‐weight polydimethylsiloxane (PDMS) by solution dispersion and then treated in argon plasma for different time. The modified α‐alumina fillers were characterized with high‐resolution transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The results revealed that a thin PDMS film with several nanometers thick was tightly coated on the surface of the alumina filler after plasma treatment, and this thin film could not be removed by 48 h of Soxhlet extraction with n ‐hexane at 120°C. Plasma modification of the alumina could dramatically weaken the strength of the filler–filler networks and, thus, remarkably reduce the modulus of the alumina‐filled silicone rubber composites but did not affect the thermal conductivity of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here