Premium
Optimal geometry design of the coat‐hanger die with uniform outlet velocity and minimal residence time
Author(s) -
Han Wanli,
Wang Xinhou
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34827
Subject(s) - geometry , residence time (fluid dynamics) , manifold (fluid mechanics) , die (integrated circuit) , materials science , flow (mathematics) , mechanics , mathematics , physics , engineering , mechanical engineering , nanotechnology , geotechnical engineering
In this article a method combining the orthogonal array design and the numerical simulation is used to optimize the geometry parameters of the coat‐hanger die with uniform outlet velocity and minimal residence time. The outlet velocity and the residence time are obtained by simulating the three‐dimensional nonisothermal polymer flow in the coat‐hanger die, while the optimal geometry design is accomplished via the orthogonal array method. The effects of the manifold angle, the land height and the slot gap on the outlet velocity and the residence time are investigated. The results show that the effects of all the three parameters are significant for the outlet velocity. For the residence time, the manifold angle and the slot gap are the significant factors, while the effect of the land height is insignificant. The optimal geometry parameters of the coat‐hanger die achieved in this study are that the manifold angle is 5°, the height land is 70 mm, and the slot gap is 3 mm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012