z-logo
Premium
Synthesis of epoxy‐functionalized hyperbranched poly(phenylene oxide) and its modification of cyanate ester resin
Author(s) -
Huang Pingzhen,
Gu Aijuan,
Liang Guozheng,
Yuan Li
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34791
Subject(s) - cyanate ester , thermosetting polymer , materials science , epoxy , curing (chemistry) , glass transition , phenylene , composite material , dielectric , thermal stability , oxide , polymer chemistry , polymer , chemical engineering , optoelectronics , metallurgy , engineering
High curing temperature is the key drawback of present heat resistant thermosetting resins. A novel epoxy‐functionalized hyperbranched poly(phenylene oxide), coded as eHBPPO, was synthesized, and used to modify 2,2′‐bis (4‐cyanatophenyl) isopropylidene (CE). Compared with CE, CE/eHBPPO system has significantly decreased curing temperature owing to the different curing mechanism. Based on this results, cured CE/eHBPPO resins without postcuring process, and cured CE resin postcured at 230°C were prepared, their dynamic mechanical and dielectric properties were systematically investigated. Results show that cured CE/eHBPPO resins not only have excellent stability in dielectric properties over a wide frequency range (1–10 9 Hz), but also show attractively lower dielectric constant and loss than CE resin. In addition, cured CE/eHBPPO resins also have high glass transition temperature and storage moduli in glassy state. These attractive integrated performance of CE/eHBPPO suggest a new method to develop high performance resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom