z-logo
Premium
Mechanical properties, thermal, and crystallization behavior of polypropylene composites reinforced by starch and wasted cotton cloth
Author(s) -
Zhang Xiuju,
Yang Huajun,
Yang Tingting,
Lin Zhidan,
Tan Shaozao
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34514
Subject(s) - composite material , materials science , crystallinity , polypropylene , crystallization , ultimate tensile strength , heat deflection temperature , izod impact strength test , flexural strength , nucleation , fiber , wood flour , chemistry , organic chemistry
In this study, wasted cotton cloth was bonded with soluble starches as an adhesive, then dried, cut into fiber fragments and filled into polypropylene (PP) to achieve resource efficiency. The mechanical, thermal, and crystallization properties of the composites were characterized. The results indicated that with the addition of wasted cotton cloth treated without or with silane coupling agent (RC or TRC), PP composites' tensile strength, impact strength, and flexural strength have been improved. The heat distortion temperatures increased slowly, indicating that wasted cotton cloth filled into PP can be turned back into useful items without degradation of PP composites exhibited. Thus, it is a good avenue for the utilization of an otherwise wasted cotton cloth resource. The crystallization activation energy, nucleation constant, and folding surface free energy of PP were markedly reduced in PP/RC composites and its compatibilized composites. The value of F ( T ) gradually increased with the increasing relative degree of crystallinity. The addition of wasted cotton cloth could significantly reduce the spherulitic size of PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here