Premium
Effect of hot air aging on properties of EPDM/SmBO 3 /EVA and EPDM/ATO/EVA composites
Author(s) -
Su Jun,
Chen Shuangjun,
Zhang Jun
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34420
Subject(s) - materials science , composite material , crystallinity , epdm rubber , ethylene vinyl acetate , natural rubber , vulcanization , ultimate tensile strength , ethylene propylene rubber , softening point , copolymer , polymer
Ethylene–propylene–diene rubber (EPDM)/samarium borate (SmBO 3 )/ethylene‐vinyl acetate (EVA) copolymer and EPDM/antimony‐doped tin oxide (ATO)/EVA composites are aged at 150°C for different intervals. Surface modification is used to improve filler to matrix interphase. The main aim is to investigate the effect of filler type and vinyl acetate (VA) content in EVA on stability of EPDM composites. It is found that acidic ATO particles can lower pH level of EPDM composites and then promote the degradation of acetic acid during aging. Moreover, when VA content exceeds 14 wt %, the instable VA content causes more acetic acids escape during aging. With the increasing of aging time, EPDM/SmBO 3 control and EPDM/SmBO 3 /EVA composites tend to become darker while EPDM/ATO and EPDM/ATO/EVA composites would become yellow. And the color change is correlated well with the variation of carbonyl index. The chemical crosslink points prevent crystals in EVA from melting at aging temperature (150°C), and the variation of crosslink density influences the crystallinity during aging. The tendency of tensile strength is well consistent with that of swelling ratios, and electric properties are correlated with increased polar groups and crystallinity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011