Premium
Renewable polyol‐based polycarbamates and polycarbamate–formaldehyde thermosetting resins
Author(s) -
Kim Moon G.
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34310
Subject(s) - thermosetting polymer , curing (chemistry) , formaldehyde , materials science , urea formaldehyde , synthetic resin , polyol , hydroxymethyl , polymer chemistry , chemical engineering , organic chemistry , chemistry , composite material , adhesive , polyurethane , layer (electronics) , engineering
Several polycarbamates and polycarbamate–formaldehyde (CF) resins were synthesized, and their properties were investigated aiming at developing of useful thermosetting polymer materials from simple polyols including those derived from renewable resources. Polycarbamates synthesized from polyols using two‐step laboratory routes showed good storage stabilities making them suitable as large volume industrial chemicals. Furthermore, syntheses and 13 C‐NMR studies of CF resins showed the formation of oligomeric resins having hydroxymethyl and methylene groups with thermosetting curing properties that are similar to those of current urea–formaldehyde (UF) resins. Dynamic mechanical analysis studies showed somewhat slower curing rates for CF resins compared to UF resins. Bonding of particleboard and internal bond and free formaldehyde content measurements indicated high‐bond strength values and very low‐formaldehyde emission potentials for CF resins. The higher functionalities of CF resins appear to be the basis of good performances. Further investigations on scalable synthesis methods for polycarbamates and on the expansion of CF resins' bonding capabilities would need to be investigated in the future. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011