z-logo
Premium
Processing‐improved properties and morphology of PP/COC blends
Author(s) -
Vacková Tat'ana,
Šlouf Miroslav,
Nevoralová Martina,
Kaprálková Ludmila
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34258
Subject(s) - materials science , composite material , polypropylene , polymer blend , ultimate tensile strength , morphology (biology) , scanning electron microscope , rheology , fiber , copolymer , polymer , biology , genetics
The aim of this study was to improve mechanical properties of polypropylene/cycloolefin copolymer (PP/COC) blends by processing‐induced formation of long COC fibers. According to the available literature, the fibrous morphology in PP/COC blends was observed just once by coincidence. For this reason, we focused our attention on finding processing conditions yielding PP/COC fibrous morphology in a well‐defined, reproducible way. A number of PP/COC blends were prepared by both compression molding and injection molding (IM). Neat polymers were characterized by rheological measurements, whereas phase morphology of the resulting PP/COC blends was characterized by means of scanning electron microscopy (SEM). The longest COC fibers were achieved in the injection molded PP/COC blends with compositions 75/25 and 70/30 wt %. Elastic modulus and yield strength of all blends were measured as functions of the blend composition using an Instron tensile tester; statistically significant improvement of the yield strength due to fibrous morphology was proved. Moreover, two different models were applied in the analysis of mechanical properties: (i) the equivalent box model for isotropic blends and (ii) the Halpin‐Tsai model for long fiber composites. In all PP/COC blends prepared by IM, the COC fibers were oriented in the processing direction, as documented by SEM micrographs, and acted as a reinforcing component, as evidenced by stress–strain measurements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here